Graph Products of Right Cancellative Monoids
نویسندگان
چکیده
Our first main result shows that a graph product of right cancellative monoids is itself right cancellative. If each of the component monoids satisfies the condition that the intersection of two principal left ideals is either principal or empty, then so does the graph product. Our second main result gives a presentation for the inverse hull of such a graph product. We then specialise to the case of the inverse hulls of graph monoids, obtaining what we call polygraph monoids. Among other properties, we observe that polygraph monoids are F ∗-inverse. This follows from a general characterisation of those right cancellative monoids with inverse hulls that are F ∗-inverse.
منابع مشابه
Right Cancellative and Left Ample Monoids: Quasivarieties and Proper Covers
The aim of this paper is to study certain quasivarieties of left ample monoids. Left ample monoids are monoids of partial one–one mappings of sets closed under the operation α 7→ αα−1. The idempotents of a left ample monoid form a semilattice and have a strong influence on the structure of the monoid; however, a left ample monoid need not be inverse. Every left ample monoid has a maximum right ...
متن کاملLeft I-quotients of band of right cancellative monoids
Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancell...
متن کاملRims-1705 Growth Partition Functions for Cancellative Infinite Monoids
We introduce the growth partition function ZΓ,G(t) associated with any cancellative infinite monoid Γ with a finite generator system G. It is a power series in t whose coefficients lie in integral Lie-like space LZ(Γ, G) in the configuration algebra associated with the Cayley graph (Γ, G). We determine them for homogeneous monoids admitting left greatest common divisor and right common multiple...
متن کاملClassification of monoids by Condition $(PWP_{ssc})$
Condition $(PWP)$ which was introduced in (Laan, V., {it Pullbacks and flatness properties of acts I}, Commun. Algebra, 29(2) (2001), 829-850), is related to flatness concept of acts over monoids. Golchin and Mohammadzadeh in ({it On Condition $(PWP_E)$}, Southeast Asian Bull. Math., 33 (2009), 245-256) introduced Condition $(PWP_E)$, such that Condition $(PWP)$ implies it, that is, Condition $...
متن کاملZappa-Szép products of free monoids and groups
We prove that left cancellative right hereditary monoids satisfying the dedekind height property are precisely the Zappa-Szép products of free monoids and groups. The ‘fundamental’ monoids of this type are in bijective correspondence with faithful self-similar group actions. 2000 AMS Subject Classification: 20M10, 20M50. 1 A class of left cancellative monoids This paper develops some ideas that...
متن کامل